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Abstract

In this paper we describe a force-coupling method for particle dynamics in fluid flows. The general principles of the

model are described and it is tested on three different Stokes flow problems; a single isolated sphere, a pair of otherwise

isolated spheres, and a single sphere in a channel. For sphere to sphere or sphere to wall distances larger than 1/4 of the

sphere radius the force-coupling results compared well with analytical and accurate numerical values. For smaller

distances the results agree qualitatively, but lubrication effects are not included and this leads to a quantitative dis-

crepancy.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Over the last decade, it has become possible to develop micro-electromechanical systems (MEMS) for

applications in chemical, biochemical or biomedical analysis. These devices combine electrical and me-

chanical components on a small silicon or polymer chip and among their possible uses are the sorting or

analysis of cells and particles, and the separation of particles from a fluid sample. The general context of

these applications is reviewed by Ho and Tai [1] and a specific example of a particle separation device is

described by Lomholt et al. [2]. An important aspect in the design of these devices is to be able to determine

the motion of particles in the liquid flow as they move through possibly complex geometries under a range

of conditions for Reynolds number, particle size, concentration, and body forces acting on the particle.
Similar issues arise too in more traditional areas of dispersed two-phase flow where solid particles are

transported in a liquid and may be settling under gravity or subject to a shear flow.
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One standard approach to determining the unsteady motion of a small rigid particle in a viscous fluid is

to apply the Basset–Boussinesq–Oseen theory, see for example [3]. This specifies an equation of motion for

each particle based on the local ambient flow. However, this method is limited to very low particle Reynolds

numbers and to isolated, small particles that are well separated from boundaries or each other. Efforts have

been made by Lovalenti and Brady [4], Lawrence and Mei [5] and others to extend the range of application

of this approach but many of the basic limitations still remain.

In confined flows, or dispersed two-phase flows where the mass-fraction of the particles is significant, the

fully coupled dynamics of the fluid motion and the particle motion need to be considered. In the context of
steady, low Reynolds number, Stokes flows a variety of methods are now well-established such as Stokesian

dynamics described by Brady and Bossis [6], multipole methods as described for example by Happel and

Brenner [7], Mazur and Van Saarloos [8] or Kim and Karrila [9], or boundary element methods. Specific

applications of the multipole method for particle sedimentation are given by Ladd [10], [11], and Sangani

and Mo [12]. Improvements to the Stokesian dynamics algorithm have been made recently by Ichiki and

Brady [13] and by Sierou and Brady [14].

For more general flow conditions the full Navier–Stokes equations are solved numerically as in the finite

element computations of Hu [15] and Johnson and Tezduyar [16]. In these, the full no-slip boundary
conditions are applied on each particle and the fluid forces evaluated to determine the particle motion in the

flow. The underlying finite elements deform in an arbitrary Lagrangian–Eulerian (ALE) scheme as the

particles move through the fluid. The elements are then periodically remeshed to maintain numerical res-

olution. This approach provides good accuracy but is computationally intensive. Alternatively, Glowinski

et al. [17] and Patankar et al. [18] employ a fictitious domain method with a fixed numerical mesh and

impose a distributed Langrange multiplier (DLM) to force the fluid inside the particle to respond as a rigid

body. This scheme too may become computationally intensive as more constraints are imposed. Unverdi

and Tryggvason [19] similarly use a fixed numerical mesh in a front-tracking scheme that has been very
successfully used to simulate the motion of deforming drops and bubbles in liquids. In these higher reso-

lution methods up to 18 grid points, for a uniform mesh, may be needed per particle diameter to properly

resolve the flow details.

In this paper we describe an approximate, yet effective method for calculating these particle-flow in-

teractions based on a force-coupling procedure. The method is outlined in Maxey et al. [20], and in more

detail in Maxey and Patel [21] for the context of Stokes flows. The method is conceptually similar to

Stokesian dynamics but is applicable to both Stokes and finite Reynolds number flows. The basic approach

is to represent the presence of each particle in the flow by a low-order expansion of finite-valued, force
multipoles applied as a distributed body force on the flow. Fluid fills the whole domain, including the

volume occupied by the particles, and the Navier–Stokes equations are solved throughout the domain on a

fixed numerical mesh. Unlike traditional multipole methods or Stokesian dynamics, no singularities are

encountered and no special consideration is needed for the self-induced flow of a particle. Indeed such flows

allow us to incorporate directly the finite-size of the particle and the length scale of the force distribution is

directly related to the radius of the particle. This scheme requires only about 4–6 grid points per particle

diameter on a uniform mesh, and is straightforward to implement with existing codes for solving the

Navier–Stokes equations. The velocity of each particle is found from the local fluid velocity and from this
the Lagrangian motion of the particle is calculated. The disadvantage of the method is that the flow close to

the surface of each particle is not resolved and there are limitations at present on the accuracy of close-

particle interactions in the flow. Beyond the issue of numerical simulations, the method further provides a

basis for developing theoretical models of dispersed two-phase flows and for simplifying the description of

these systems.

The purpose of this paper is to extend the force-coupling method as described in Maxey and Patel [21]

for periodic domains to include higher-order effects through the introduction of force dipole terms and to

extend it to bounded domains. These terms are needed for near interactions between particles, interactions
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with wall boundaries, representing shear flow effects and determining the rotation rate of particles. The

extended force-coupling method is then tested for several problems including the interaction of two par-

ticles in an open flow, a single spherical particle moving in a wall-bounded channel, or a particle in a

Poiseuille flow. The theory and results are developed in the context of Stokes flow, and compared to es-

tablished results. The method has been successfully applied to finite Reynolds number flows by Dent [22],

Lomholt [23], and has been compared with data from laboratory experiments for finite Reynolds number

conditions by Lomholt et al. [24].

2. The force-coupling method – general principles

The key elements of the approximate force-coupling method (FCM) for dispersed two-phase flow are as

follows. The effect of the particles on the fluid phase are represented by a localized body force fðx; tÞ that
transmits to the fluid the resultant force of the particles on the flow. The equations for fluid motion are

applied to the whole domain, including the volume occupied by the particles, so the fluid velocity field

uðx; tÞ satisfies

q
Du

Dt
¼ �rp þ lr2uþ fðx; tÞ; ð1Þ

where q; l are the fluid density and viscosity respectively and p is the pressure. In addition there is the

constraint of incompressible flow

r � u ¼ 0: ð2Þ

In the initial version of the force-coupling method a force monopole term alone is specified and

fðx; tÞ ¼
XN
n¼1

FðnÞD x
�

� YðnÞðtÞ
�
; ð3Þ

where YðnÞ is the position of the nth spherical particle and FðnÞ is the force this exerts on the fluid. The

localized force distribution for each particle is determined by the function DðxÞ which is chosen as a
Gaussian function

DðxÞ ¼ ð2pr2Þ�3=2
exp

�
� x2

2r2

�
; ð4Þ

and the length scale r is set in terms of the particle radius a as

a
r
¼

ffiffiffi
p

p
: ð5Þ

The velocity of each particle VðnÞðtÞ is found by forming a local average of the fluid velocity over the region

occupied by the particle as

VðnÞðtÞ ¼
Z
uðx; tÞD x

�
� YðnÞðtÞ

�
d3x: ð6Þ

The value of the ratio a=r given in (5) is determined by matching the induced particle velocity with the

Stokes settling velocity for an isolated particle settling under gravity in the limit of zero Reynolds number.
Discussions on how to determine the particle velocity are given in Maxey et al. [20] and Maxey and Patel

[21].
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An important aspect of the model is the overall kinetic energy budget for the flow. The total fluid kinetic

energy is found by forming the scalar product of the fluid momentum Eq. (1) with uðx; tÞ and integrating

this over the whole domain, including the volume occupied by the particle phase. The resulting terms are

the usual rate of change of fluid kinetic energy, the transport of kinetic energy in or out of the domain, the

rate of work done by the fluid stresses on the boundary of the domain, the viscous dissipation and the rate

of work by the particulate phase on the fluid which is thenZ
u � f d3x: ð7Þ

Inserting f from (3) this rate of work by the particulate phase is equal toXN
n¼1

Z
uðx; tÞ � FðnÞD x

�
� YðnÞ�d3x; ð8Þ

which in turn is equal toXN
n¼1

FðnÞ � VðnÞ: ð9Þ

The above expression is the sum of the individual contributions of each particle to the rate of work, namely

the scalar product of particle velocity with the resultant force the particle exerts on the fluid. The total rate

of viscous dissipation of kinetic energy is found by integrating the local dissipation rate over the whole

domain, including the volume occupied by the particles, asZ
2leijeij d

3x; ð10Þ

where eij is the local rate of strain. Consequently, when the particle velocity is found using (6) the kinetic
energy budget in the model is self-consistent.

With the force-coupling method we do not attempt to match the exact no-slip boundary conditions on

the surface of each particle nor does the model reproduce the full flow structure close to each particle.

Instead the flow is locally smoothed out, or spatially filtered. However, the flow representation away from

the surface of a particle and the interaction of particles through the flows they generate are adequately

resolved. In order to improve the flow representation the force-coupling model may be extended to include

force dipoles in addition to the monopoles in (3) so that

fiðx; tÞ ¼
XN
n¼1

F ðnÞ
i D x

��
� YðnÞðtÞ

�
þ GðnÞ

ij
o

oxj
D0 x
�

� YðnÞðtÞ
�	

: ð11Þ

The function D0ðxÞ is also a Gaussian as in (4) but the length scale is instead r0 and differs from the length

scale for the monopole term. In a standard multipole expansion a single distribution function and length

scale would be used with r chosen to be small compared to the particle radius [21]. With the force-coupling

method the length scales are comparable to the particle size and are used as parameters in the model.

The dipole coefficientGðnÞ
ij is related to themoment of forces acting on the fluid and it consists of a symmetric

part and an anti-symmetric part. The anti-symmetric part corresponds to a torque. For a single particle at the

origin the torque density associated with the force distribution is x
 f and the resultant torque on the fluid is

Ti ¼
Z

�ijkxj FkDðxÞ
�

þ Gkm
o

oxm
D0ðxÞ

	
d3x; ð12Þ
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integrated over the whole domain. The monopole term produces no torque so the torque from the particle

on the fluid is

Ti ¼ �ijkGjk: ð13Þ

The rate of work on the fluid by an applied torque T is T � X, where X is the induced rotation of the

spherical particle. As before we may evaluate the rate of work on the fluid (7) by the force distribution

fðx; tÞ and the contribution from the additional force dipole term in general isZ
uiðx; tÞGij

o

oxj
D0ðxÞd3x: ð14Þ

The anti-symmetric part of the dipole term is equal to 1
2
�ijkTk (from (13)) and the rate of work by this anti-

symmetric part is equal to

� 1

2
�ijkTk

Z
oui
oxj

D0ðxÞd3x: ð15Þ

This matches the expected value T � X provided the angular velocity of the particle is evaluated from the

local fluid vorticity x as

X ¼ 1

2

Z
xðx; tÞD0ðxÞd3x: ð16Þ

The symmetric component of the dipole coefficient Gij corresponds to a stresslet acting on the fluid. This is

purely an internal force term acting between the fluid and particle phases, and arises from the fact that the

particle is a rigid body. No net work is done and the contribution to the total rate of work is zero. In other

words the components of the symmetric part of Gij are chosen so that the constraintZ
1

2

oui
oxj

�
þ ouj

oxi

�
D0ðx� YÞd3x ¼ 0 ð17Þ

is satisfied for each particle. This states that the locally averaged fluid rate of strain for the volume occupied

by a particle is zero.

Hence, when the force-coupling method is extended with the force dipole terms, choosing the angular

velocity of the particles as defined by (16) and imposing the constraint (17) ensure that a self-consistent

kinetic energy budget is maintained.

3. Isolated Stokes particle

The extended force-coupling model, with both monopole and dipole terms, is first applied to the motion

of a single isolated sphere moving in a low Reynolds number Stokes flow. In a viscous Stokes flow the fluid

inertia is negligible compared to the viscous stresses. The corresponding form of the momentum Eq. (1) is

0 ¼ �rp þ lr2uþ fðx; tÞ: ð18Þ

The inertia of the particles is neglected too and so the force F of a particle on the fluid is equal to the

resultant external force on the particle, such as the force due to gravity in the context of gravitational

settling in a suspension. In Maxey and Patel [21], the force-coupling model for Stokes flow was derived for

the simple force monopole term in (3). The Stokes flow induced by the force monopole FDðxÞ for a single
isolated particle at the origin is
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ui ¼ SijðxÞFj; ð19aÞ

Sij ¼ AðrÞdij þ BðrÞxixj; ð19bÞ

where r ¼ jxj and

AðrÞ ¼ 1

8plr
1

�

þ r2

r2

�
erf

r

r
ffiffiffi
2

p
� �

� 2r
r
ð2pÞ�1=2

exp

�
� r2

2r2

��
; ð20aÞ

BðrÞ ¼ 1

8plr3
1

�

� 3r2

r2

�
erf

r

r
ffiffiffi
2

p
� �

þ 6r
r
ð2pÞ�1=2

exp

�
� r2

2r2

��
: ð20bÞ

Fig. 1 shows profiles along the x1 and x2 axis of the fluid velocity u1 obtained from (19a) for the case of a

sphere moving with the Stokes settling velocity W in the x1 direction. Clearly the solution (19a) agrees well

with the Stokes solution for distances r=a > 1:25.
Since the equations for Stokes flow are linear the flow induced by the force dipole in (11) may be ob-

tained by differentiating the result (19a) with respect to x. The Fourier transform of the flow field due to the

force dipole of a single isolated particle at the origin is given by the solution of (18) as

buui ¼ ðlk2Þ�1½dij � kikj=k2ikm bD0D0 ðkÞGjm: ð21Þ

The flow field is then

ui ¼ RijkðxÞGjk; ð22aÞ

Rijk ¼
dA0

dr
dijxk=r þ B0ðrÞðdikxj þ djkxiÞ þ

dB0

dr
xixjxk=r; ð22bÞ

and the functions A0ðrÞ and B0ðrÞ are based on (20a) and (20b) with the length scale r0,

dA0

dr
¼ � 1

8plr2
1

�

þ 3r02

r2

�
erf

r

r0
ffiffiffi
2

p
� �

� 4r
r0

�
þ 6r0

r

�
ð2pÞ�1=2

exp

�
� r2

2r02

��
; ð23aÞ

Fig. 1. Profiles of the u1 fluid velocity along the x1-axis (a) and the x2-axis (b) for an isolated sphere of radius a moving with velocity W
in positive x1-direction as given by the force-coupling result (19a). The Stokes solution is shown as � and the FCM result as the line.
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dB0

dr
¼ � 1

8plr4
3

�

� 15r02

r2

�
erf

r

r0
ffiffiffi
2

p
� �

þ 4r
r0

�
þ 30r0

r

�
ð2pÞ�1=2

exp

�
� r2

2r02

��
: ð23bÞ

The local, volume-averaged velocity gradient for a single, isolated particle at the origin given as

eCCij ¼
Z

oui
oxj

D0ðxÞd3x; ð24Þ

may be related directly to the dipole coefficient Gij. The explicit relation is found from the Fourier

transform (21) of the dipole flow field,

eCCij ¼ �Gkmð2pÞ�3

Z
dik



� kikk
k2

�
kmkj
lk2

expð�k2r02Þd3k: ð25Þ

The local volume-averages, such as (6) or (17) and (24), are convolution integrals and these correspond to a

spatial filter in a Fourier representation. The force monopole has no effect on eCCij and the above relationship

to Gkm is isotropic so that for some constants a; b; c the value of eCCij iseCCij ¼ ðadijdkm þ bdikdjm þ cdimdjkÞGkm: ð26Þ

From the symmetry of (25) in the indices i; k and j;m it follows that

a ¼ c ð27Þ

and as the flow is incompressible

3a þ b þ c ¼ 0: ð28Þ

As a result the average velocity gradient is

eCCij ¼ �3a Gij

�
� 1

3
dijGkk

�
� aðGij � GjiÞ: ð29Þ

A sum over both pairs of indices then yields from (25) the result

3a þ 9b þ 3c ¼ � 4lp3=2r03� ��1 ð30Þ

so that

a ¼ 120lp3=2r03� ��1
: ð31Þ

As we will show below in Section 3.1 the appropriate choice for the length scale r0 is

a
r0 ¼ 6

ffiffiffi
p

p� �1=3 ð32Þ

or a=r0 is approximately 2.20. The local, volume-averaged velocity gradient is then

eCCij ¼ � 3

20pla3
Gij

�
� 1

3
dijGkk

�
� 1

20pla3
Gij
�

� Gji
�
; ð33Þ

in agreement with standard results of Stokes flow as illustrated in the following sections.
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3.1. Simple torque

An isolated particle subject to an applied torque T will rotate with an angular velocity X, which is given

by the standard relation [7]

T ¼ 8pla3X: ð34Þ

The Stokes flow for the region outside the sphere is

u ¼ ð8plr3Þ�1ðT
 xÞ: ð35Þ

This satisfies the no-slip boundary condition on the surface of the particle and the fluid velocity there is

X 
 x. The corresponding result of the force-coupling model, from (22a) to (23b), is

u ¼ ð8plr3Þ�1ðT
 xÞ erf
r

r0
ffiffiffi
2

p
� �"

� r
r0

2

p

� �1=2

exp

�
� r2

2r02

�#
ð36Þ

with the dipole coefficient Gij equal to 1
2
�ijkTk. Clearly these results for the flow match at points away from

sphere, where the expression in the square brackets goes to one. In Fig. 2 the azimuthal velocity component

given by the force-coupling method result (36) is compared to the exact result (35). As for the translating

sphere in Fig. 1 the results agree well for distances r=a > 1:25.
For a given torque or dipole coefficient the force-coupling method specifies the angular velocity of the

particle from (16), which in terms of the locally averaged velocity gradient is

Xi ¼
1

2
�ijk eCCjk: ð37Þ

Combining with (34) this may be written in terms of the anti-symmetric dipole coefficient as

Xi ¼
5

2
a�ijkGjk; ð38Þ

Fig. 2. Profile of the u1 fluid velocity along the x2-axis for an isolated sphere of radius a rotating with angular velocity X as given by the

force-coupling result (36). The Stokes solution is shown as � and the FCM result as the line. (a) shows the long range agreement and (b)

shows the agreement near the sphere surface.
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or

X ¼ 48lp3=2r03� ��1
T; ð39Þ

substituting the value of a from (31). Matching the angular velocity from the force-coupling method with

angular velocity from the Stokes solution by equating (39) with (34) then gives the appropriate value of the

ratio a=r0 for the dipole term and this is equal to that given in (32).

3.2. Uniform straining flow

An isolated rigid particle placed in a uniform external straining flow ui ¼ Eijxj generates a local dis-

turbance flow corresponding to a symmetric stresslet Gij and a higher order degenerate force octapole so as

to satisfy the no-slip boundary conditions on the surface of the spherical particle. The exact result for this
induced Stokes flow is [9]

ui ¼ � 3

8plr5
xixjxkGjk þ

3a2

40plr7
ð5xixjxk � 2r2dijxkÞGjk ð40Þ

and the stresslet is

Gij ¼
20

3
pla3Eij: ð41Þ

This stresslet has zero trace as the flow is incompressible.

The force-coupling method will also give rise to a stresslet to ensure that the locally volume-averaged

rate of strain for the particle is zero, according to the condition (17). The flow induced by a symmetric,

traceless stresslet Gij according to the force-coupling model is from (22a) to (23b)

ui ¼ � 3

8plr5
xixjxkGjkerf

r

r0
ffiffiffi
2

p
� �

þ 3r02

8plr7
erf

r

r0
ffiffiffi
2

p
� �

ð5xixjxk � 2r2dijxkÞGjk þ ð8plr4r0Þ�1ð2pÞ�1=2


 exp

�
� r2

2r02

�
4 r2dijxk
��

� xixjxk
�
þ 6r02

r2
ð2r2dijxk � 5xixjxkÞ

	
Gjk: ð42Þ

Fig. 3. Streamlines for a sphere in a uniform straining flow u1 ¼ x1, u2 ¼ �x2, and u3 ¼ 0. The streamlines are shown in the plane

x3 ¼ 0. (a) shows the exact Stokes solution and (b) shows the approximate force-coupling solution.
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The local volume-averaged rate of strain of this flow is given by (29) and if Gij is symmetric and traceless

then eCCij ¼ �3aGij: ð43Þ

With a given by (31) and the ratio a=r0 set by (32) then (43) implies that

eCCij ¼ � 3

20pla3
Gij: ð44Þ

This is in agreement with the exact Stokes result (41). The force dipole creates a local velocity gradient to

cancel the imposed external rate of strain Eij and so satisfy the constraint (17).
The first two terms of the flow field (42) correspond to a combination of a pure stresslet flow and a

degenerate force octapole sufficiently far from the particle center that the error function coefficient is

approximately equal to one. The other terms in (42) decrease rapidly away from the particle center. The

coefficient for the octapole term in (42) is 3r02=8pl compared to 3a2=40pl in the result for the exact

Stokes flow (40). The ratio of these coefficients is a2=5r02 and they are approximately equal to within

3%.

Fig. 3 shows a comparison between the exact Stokes solution (40) and the force-coupling solution (42)

in terms of the streamline pattern for a sphere in a uniform straining flow. The external rate of strain is
assumed to be a simple two-dimensional system with E11 ¼ �E22 ¼ E and all other components zero. The

induced stresslet is G11 ¼ �G22 ¼ G with G ¼ 20pla3E=3. Away from the sphere surface the streamline

pattern from the force-coupling result resembles that of the Stokes solution. Fig. 3 also shows that

the force-coupling model sets up an recirculating flow creating a fictitious sphere slightly larger than the

actual sphere. In Fig. 4 the velocity profiles for the induced stresslet flow fields shown in Fig. 3. The

figure shows the profile of the u1 velocity component as a function of the distance along the x1-axis and
along the line x1 ¼ x2. The agreement with the exact Stokes solution is again very good for distances

r=a > 1:25, while close to the sphere the approximate force-coupling result deviates slightly from the
exact solution.

Fig. 4. Profile of the u1 fluid velocity as function of the distance along the x1-axis (a) and along the line x1 ¼ x2 (b) for an isolated

sphere of radius a in a uniform straining flow u1 ¼ x1, u2 ¼ �x2, and u3 ¼ 0 as given by the force-coupling result (42). The Stokes

solution is shown as � and the FCM result as the line.
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4. Motion of particle pair

The next case to examine is the steady motion of a pair of isolated equal sized spheres settling under

gravity. In this case two different problems may be considered; one where the forces on the spheres are

equal in both magnitude and direction, and one where the forces are equal in magnitude but opposite in

direction. The results from the force-coupling model will be compared with data taken from Batchelor [25],

Batchelor [26], and Ganatos et al. [27] who all presented exact data based on the solutions by Stimson and

Jeffery [28].

4.1. Forces in same direction

In the first problem, with the spheres both settling, the mutual influence of the disturbance flow created
by each particle leads to a settling velocity larger than that for a single isolated particle. The settling velocity

of the pair depends on the separation between the particles and the orientation of the line of centers to the

vertical [25]. Once the settling velocity has been determined for the two standard configurations, two

spheres separated either vertically or horizontally, the settling velocity is given for all other configurations

[25]. However, only for these two basic configurations will the spheres settle vertically.

The results are obtained by numerically evaluating the analytical expressions (19a) to (20b) and (22a) to

(23b) for the flow field and computing the integrals for the particle velocity (6), angular velocity (16) and the

average rate of strain (17). The pair of particles have a basic symmetry that determines the form of force
dipole coefficients; so following a calibration step for a single dipole a simple system of linear equations can

be solved to determine the coefficients from (17). The integrals are all convolutions and each integral can be

evaluated as a simple Riemann sum over a uniform, three-dimensional grid centered on the particle. The

sum yields spectral accuracy provided the grid is large enough and the spacing small enough.

In Fig. 5 the results from the force-coupling model evaluated using only a monopole term and using both

a monopole and a dipole term are compared with the theoretical results. When the spheres are separated

vertically the force-coupling model with only the monopole gives a qualitatively correct result with an error

below 5%. Including the force dipole clearly improves the solution and the error drops to below 1%.

Fig. 5. Comparison of the force-coupling model with the exact Stokes solution for a pair of equal spheres with either vertical sepa-

ration or horizontal separation. The settling velocities are shown in (a) and the angular velocity in the case of horizontal separation is

shown in (b). r=a is the center to center distance between the spheres. (�) Stokes solution; (� � �) force-coupling solution with only the

monopole; (—) force-coupling solution with both force terms.
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In the case of the horizontally separated spheres the force-coupling method performs very well and

the effect of the force dipole is negligible until very near contact. In this case the spheres will rotate in

opposite directions with an angular velocity of the same magnitude. The left sphere will rotate

clockwise and the right sphere anti-clockwise. The influence of this on the settling velocity of the pair is

a net increase. However, once the spheres come close together the rotation diminishes (to zero at

r=a ¼ 2) due to the no-slip condition at the sphere surfaces and this causes the theoretical settling

velocity to drop for distances r=a < 2:01. Since the force-coupling method does not resolve the flow

near the surface of the spheres this is not captured by the method. The angular velocity of the spheres
is also shown in Fig. 5. The inclusion of the force dipole improves the force-coupling result, but as

already mentioned the model cannot fully resolve the flow field when the two spheres are close together

r=a < 2:25.
The discrepancies for the two problems above are not critical for particle suspensions at low to moderate

concentrations. However, for closely packed suspensions they may give rise to errors.

4.2. Forces in opposite direction

When the forces on two equal sized spheres are equal in magnitude but opposite in direction the velocity

of each sphere will also be equal in magnitude and opposite in direction. However, since the spheres are

moving in opposite directions the absolute value of the particle velocity will be smaller than the corre-

sponding Stokes terminal velocity.
The settling velocities obtained with the force-coupling method are compared with the theoretical values

in Fig. 6. For the horizontally separated spheres the force-coupling model does well and the difference

between using the force monopole only and including both force terms is negligible. However, when the

spheres are separated only vertically including the force dipole results in a much better result with an error

of 10% at r=a ¼ 2:5, while the error on the monopole result at this point is 28%. Lubrication effects become

important in the case of vertical separation and the lack of these effects in the model causes the discrep-

ancies when the two spheres come close together.

Fig. 6. Comparison of the force-coupling model with the exact Stokes solution for a pair of spheres subject to a force equal in size but

opposite in direction. The separation is either vertical or horizontal. r=a is the center to center distance between the spheres. (�) Stokes
solution; (� � �) force-coupling solution with only the monopole; (—) force-coupling solution with both force terms.
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5. Sphere in a plane channel

So far the force-coupling model has been examined in various cases of an unbounded domain. In this

section the capabilities of the force-coupling model within a simple bounded geometry will be investigated.

The setup is a sphere moving in a plane channel as shown in Fig. 7. The following cases will be considered:

1. Sphere translating perpendicular to the walls. V2 6¼ 0, V1 ¼ X ¼ U ¼ 0.

2. Sphere translating parallel to the walls. V1 6¼ 0, V2 ¼ X ¼ U ¼ 0.

3. Sphere rotating between the walls. X 6¼ 0, V1 ¼ V2 ¼ U ¼ 0.
4. Sphere rigidly held in a Poiseuille flow. U 6¼ 0, V1 ¼ V2 ¼ X ¼ 0.

These cases correspond to those computed by Ganatos et al. [29,30]. The results of Ganatos et al. [29,30]

were obtained using a boundary-multipole collocation method for solving the same Stokes problem and

they are exact in the first three digits. Ganatos et al. [29,30] solved the resistance problem, i.e. they specify a

velocity and determine the force and torque on the sphere. In the force-coupling model the mobility

problem is solved instead, i.e. a force and a torque is specified and this determines the velocity and angular

velocity of the sphere. However, in Stokes flow these two problems are the inverse of each other and

therefore a solution from the force-coupling model may be inverted and compared with the accurate so-
lutions by Ganatos et al. [29,30].

5.1. Numerical method

In contrast to the problems in the unbounded domain the plane channel problem has been solved nu-

merically. The full force-coupling equations (1) with fðx; tÞ given by (11) have been solved in a channel with

no-slip boundary conditions on the walls and periodic boundary conditions in the two other directions. The

original code was obtained from Handler et al. [31] and it uses the Fourier–Chebyshev tau method of Kim

et al. [32]. Implementation of the force-coupling terms is described in Lomholt [23] and Lomholt et al. [24].

Since the problems considered here are steady Stokes flow the non-linear terms are set to zero and the time

integration is used as an iteration scheme until a constant velocity V or angular velocity X of the sphere has

been reached. The sphere is not moved, because we want to investigate the effect of the sphere at various
given positions in the channel and this requires the sphere to be maintained at its initial position. The

resolution was set so that there are at least 4 points in each direction inside the particle and the lengths of

Fig. 7. Geometry for a sphere of radius a placed between two walls at x2 ¼ �1. U is the center line velocity of the parabolic velocity

profile u for the Poiseuille flow. V1 and V2 are the steady velocity of the sphere in direction x1 and x2, respectively. X is the steady angular

velocity of the sphere around the x3-axis. b and c are the distance from the sphere center to the bottom and the top wall, respectively.
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the periodic directions were L1 ¼ L3 ¼ 24a, while the length in the wall normal direction was L2 ¼ 2. In-

creasing the lengths of the two periodic directions beyond L1 ¼ L3 ¼ 24a was tested and no change in the

results was found. The resolution in these periodic directions was set to N1 ¼ N3 ¼ 32 in all the compu-

tations, while the resolution in the normal direction varied from N2 ¼ 16 for the large sphere in a narrow

channel (corresponding to b=a ¼ 1:1 and s ¼ 0:5 in the figures below) to N2 ¼ 144 for the small sphere in a

wide channel (corresponding to b=a ¼ 5:0 and s ¼ 0:05 in the figures below).

5.2. Sphere translating perpendicular to the walls

The geometry for motion perpendicular to the wall is given in Fig. 7 with U ¼ 0, V1 ¼ 0, X ¼ 0, and

V2 > 0. The drag force on the sphere may be expressed as,

F D
2 ¼ �6plaV2k

t; ð45Þ

where kt is a correction to the Stokes drag due to the presence of the two confining walls. In the steady state

the drag force given by (45) is balanced with the buoyancy force, which is used as the force monopole
strength F in (11). The buoyancy force is

F b
2 ¼ 4

3
pa3ðqp � qÞg2; ð46Þ

where qp is the density of the sphere and g ¼ ð0;�g; 0Þ is the gravitational acceleration. Balancing (45) with

(46) gives

kt ¼ 2

9

a2

m
g2
V2

qp
q

�
� 1

�
: ð47Þ

Therefore the drag coefficient, kt, in our computations is determined from the computed constant velocity

V2 of the sphere. A sphere moving perpendicular to the wall does not rotate and therefore solving this

problem does not require a torque.

In Fig. 8(a) the drag coefficient from our computations is compared with the results of Ganatos et al.

[29]. The coefficient is shown as a function of the position in the channel given by 1 s ¼ b=ðbþ cÞ and the

distance to the bottom wall given by the ratio b=a, see Fig. 7. Our results agree well with the exact values

when the distance from the wall to the sphere is larger than half the sphere radius (b=aP 1:5). Closer to the

wall (b=a ¼ 1:1) the drag coefficient from our results agree qualitatively but the values are approximately
17% and 48% smaller for b=a ¼ 1:25 and b=a ¼ 1:1, respectively. Therefore our model does not capture the

full effect of the wall. When the sphere is close to the wall (b=a6 2:0) lubrication effects become important

[9] and the lack of lubrication effects in the force-coupling method is the main reason for the discrepancy.

The level of accuracy for this sphere-wall problem is consistent with that of the two sphere motion in Fig. 6.

The lubrication effects would be included if the force multipole expansion included many more terms, but

this is in general impossible and the forces due to the lubrication must be modeled.

In Fig. 8(b) the correction factor computed with both force terms is compared with the correction factor

obtained using only the force monopole. In the three cases closest to the wall the dipole clearly improves the
solution for s < 0:4, but for wall to sphere distances larger than the sphere radius the effect of the dipole is

negligible. When the sphere is placed in the center of the channel the dipole term is zero because of the

symmetry. The effect of the dipole increases when the sphere is moved closer to the bottom wall (s becomes

smaller) and the symmetry is broken.

1When s ¼ 0:5 the particle is placed in the center of the channel and when s ¼ 0 the top wall is ‘‘infinitely’’ far away.
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A streamline and vector plot for b=a ¼ 1:5 and s ¼ 0:3 is shown in Fig. 9 for a plane through the center

of the sphere. The sphere is shown as the full drawn line and the walls are placed at x2 ¼ �1. The

streamlines are in the reference system of the sphere, while the vector plot is in the frame of the channel. The

streamlines show that the force-coupling model sets up two recirculation zones creating a fictitious particle

slightly larger than the actual sphere. Due to the wall, the fictitious particle has a weak spheroidal form and

this causes the discrepancy in the drag coefficient seen in Fig. 8(a). When b=a ¼ 1:1 the shape of the fic-

titious particle is even more spheroidal and hence the discrepancy in Fig. 8(a) between the exact drag
coefficient and our result is larger. This means that the dipole included in our model is not enough alone to

avoid the particle from deforming, when lubrication forces becomes important. The asymmetry in the

streamlines is a result of the squeezing of the fictitious sphere, which causes a small asymmetry in the dipole

forcing and therefore also in the velocities. The same asymmetry exist as well in the other periodic direction,

i.e. in the x2–x3 plane. The vector plot shows that the translation of the sphere generates a ring shaped

recirculation zone around the particle, where the flow goes from the top of the sphere to the bottom of the

sphere. This is very similar to the vector plot given in Ganatos et al. [29].

5.3. Sphere translating parallel to the walls

The next Stokes problem to be considered is a sphere moving parallel to the plane walls. The geometry

for this problem is shown in Fig. 7 with U ¼ 0, V2 ¼ 0, and X ¼ 0. In the force-coupling model a force and/
or torque is specified and the corresponding velocities are then determined with linear relations of the form,

Vi ¼ AijFj þ BijTj; ð48aÞ

Xi ¼ CijFj þ DijTj: ð48bÞ

Fig. 8. Results for a sphere translating perpendicular to the walls. (a) shows a comparison of the drag coefficient kt from the force-

coupling model using both force terms (symbols) with the results of Ganatos et al. [29] (lines). (b) shows a comparison of the drag

coefficient kt computed with both force terms (lines) and with only the force monopole (symbols). (N) and (—) b=a ¼ 5:0; (j) and

(���) b=a ¼ 2:0; (.) and (� � � � �) b=a ¼ 1:5; (�) and (� � � � � � �) b=a ¼ 1:25; (I) and (� � �) b=a ¼ 1:1.
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However, the problem specified here is the inverse namely to determine the force and torque due to a given

velocity of the sphere,

Fi ¼ A0
ijVj þ B0

ijXj; ð49aÞ

Ti ¼ C0
ijVj þ D0

ijXj: ð49bÞ

Therefore the drag and torque coefficients in this section have been found by solving the problem (48a) and

(48b) first for a given force with zero torque and then for a given torque and zero force. This gives the

coefficients Aij, Bij, Cij, and Dij and the problem may be inverted to give a force and a torque due to a
velocity and/or an angular velocity. It is worth noting that the force-coupling model preserves the usual

reciprocal theorem properties with Bij ¼ Cji. In this section only the first case with a velocity and zero

angular velocity is considered.

The drag correction factor kt is defined as in (45) and is computed by evaluating the force determined

from (49a) with V ¼ ðV1; 0; 0Þ and X ¼ 0. The results from the force-coupling model, computed using both

force terms, are compared with the results from Ganatos et al. [30] in Fig. 10(a). When the distance from

the wall to the sphere is greater than half the sphere radius (b=aP 1:5) the results agree reasonably well.

The kt from the force-coupling model is generally smaller than the exact values found by Ganatos et al. [30]
with the difference being up to 5%. When the sphere is placed nearer the wall the qualitative discrepancy

becomes larger and the errors are approximately 4% and 10%. Close to the wall the discrepancy observed

Fig. 9. Streamlines and vector plot for a sphere translating perpendicular to the walls; the walls are placed at x2 ¼ �1; s ¼ 0:30,

a ¼ 0:40, and b=a ¼ 1:5.
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for the parallel motion is considerably smaller than it was for the perpendicular motion, because the effect

of the wall is not as severe in the case of parallel motion. The reason for the better agreement may be found

by considering the forces for a sphere nearly touching the wall. For a sphere translating perpendicular to

the wall the lubrication force to the first order is Flub � ðb=a� 1Þ�1
, while for the parallel motion it is

Flub � lnðb=a� 1Þ to the first order [9]. Thus for a sphere in perpendicular motion the dependency on the

distance to the wall is more severe than for a sphere in parallel motion.
Fig. 10(b) presents a comparison of the drag coefficient computed with and without the force dipole.

When the distance from the wall to the sphere is larger than the sphere radius (b=aP 2) the results are

almost indistinguishable. Closer to the wall on the other hand the results with only the force monopole are

clearly smaller and the dipole term becomes important. This is consistent with the results for perpendicular

motion; the dipole is only important, when the sphere is within one radius of the wall.

A hydrodynamic torque acts on the sphere as it translates, without rotation, parallel to the plane walls

and this torque is balanced by an external torque on the sphere. This external torque is transmitted to the

fluid and is equal to the torque T in (49b) for the force-coupling model, with V ¼ ðV1; 0; 0Þ and X ¼ 0. In the
notation of Gantos et. al [30], the non-zero component of the torque is

T3 ¼ 8pla2V1k
t
T : ð50Þ

The results for the torque coefficient ktT from the force-coupling model are compared in Fig. 11(a) with

those from Ganatos et al. [30]. When the sphere is close to the wall, and the second wall is far away, there is
a slight tendency for the sphere to roll along the wall. This is prevented by the external torque and is evident

in the positive values of ktT for smaller values of s. The tendency is reversed if the gap between the particle

and the lower wall is larger and the second wall has an influence. Both features are seen in the results from

the force-coupling model.

In general, for distances b=aP 1:25 the results agree with Ganatos et al. [30], although the agreement

is not as good as for the drag coefficient. One possible reason for this is that the value of ktT is small and

Fig. 10. Results for a sphere translating parallel to the walls. (a) shows a comparison of the drag coefficient kt from the force-coupling

model using both force terms (symbols) with the results of Ganatos et al. [30] (lines). (b) shows a comparison of the drag coefficient kt

computed with both force terms (lines) and with only the force monopole (symbols). (N) and (—) b=a ¼ 5:0; (j) and (� � �)

b=a ¼ 2:0; (.) and (� � � � �) b=a ¼ 1:5; (d) and (� � � � � � �) b=a ¼ 1:25; (I) and (� � �) b=a ¼ 1:1.
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therefore it will be more contaminated by errors in the approximation and the numerical solution than kt.
Closer to the wall the discrepancy is due to the lack of lubrication effects in our model, as discussed

above. In Fig. 11(b) ktT is shown for solutions with and without the force dipole. Clearly the force dipole
has a large influence on the rotation and when it is omitted the angular velocity of the sphere is largely

overestimated.

Fig. 12 shows a streamline and a vector plot of the flow field in a plane through the center of the sphere

for b=a ¼ 1:5 and s ¼ 0:3. The streamlines are shown in the frame of the sphere, the sphere is the full drawn

line and the walls are placed at x2 ¼ �1. Similarly to perpendicular motion the streamline plot shows that

the force-coupling sets up recirculation zones around the sphere. This creates a fictitious sphere and due to

the wall it is squeezed into a slightly spheroidal form. In the coordinate frame of the channel the vector plot

shows that the translating sphere creates a recirculation zone at the wall placed at x2 ¼ 1. Even though the
flow is not fully resolved at the sphere boundary a comparison of the vector plot with that given by Ganatos

et al. [30] shows that the flow is very similar.

5.4. Sphere rotating between the walls

The problem of a sphere rotating without translation corresponds to Fig. 7 with U ¼ 0, V1 ¼ 0, V2 ¼ 0,

and X3 ¼ X. An external torque on the sphere is required to maintain the rotation and at the same time an

external force on the sphere is required to counteract the tendency of a sphere, close to the wall, to drift in a

rolling motion due to the induced flow. The external force and torque on the sphere are equal to those of

the force-coupling model and may be written as [30]

F1 ¼ 6pla2Xkr; ð51Þ

T3 ¼ 8pla3XkrT : ð52Þ

Fig. 11. Results for a sphere translating parallel to the walls. (a) shows a comparison of the torque coefficient ktT from the force-

coupling model using both force terms (symbols) with the results of Ganatos et al. [30] (lines). (b) shows a comparison of the torque

coefficient ktT computed with both force terms (lines) and with only the force monopole (symbols). (N) and (—) b=a ¼ 5:0; (j) and

(� � �) b=a ¼ 2:0; (.) and (� � � � �) b=a ¼ 1:5; (d) and (� � � � � � �) b=a ¼ 1:25; (I) and (� � �) b=a ¼ 1:1.
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The coefficients kr and krT are evaluated from the results ((49a) and (49b)), derived from the force-coupling

model.
The results from the rotating sphere are shown in Figs. 13(a) and (b). Fig. 13(a) compares the kr from the

force-coupling model with the results of Ganatos et al. [30] and the agreement is reasonable. Among the

factors contributing to the differences are the lack of lubrication effects and numerical errors in the solution

procedure, as already discussed above. The comparison for the torque coefficient krT is shown in Fig. 13(b)

and at distances b=aP 1:25 the agreement is very good. Very close to the wall (b=a ¼ 1:1) the quantitative
discrepancy is again due to the lack of lubrication effects.

In Fig. 14, a streamline and a vector plot of the flow field through the center of the sphere is shown. The

sphere is shown as the full line. The streamline plot in the frame of the sphere shows that the force-coupling
method sets up one recirculation zone, unlike the cases with the translating sphere where two recirculation

zones were created. Furthermore, it is not possible to distinguish the fictitious sphere from the rest of the

flow. The vector plot is given in the coordinate frame of the channel and is very similar to that given by

Ganatos et al. [30].

5.5. Sphere rigidly held in a Poiseuille flow

The final example concerns a sphere in a Poiseuille flow. In order to compare with Ganatos et al. [30] the

sphere must be rigidly held, that is the sphere is not allowed to move. The setup is shown in Fig. 7 with

V1 ¼ 0, V2 ¼ 0, X ¼ 0, and U ¼ ðU ; 0; 0Þ. Solving this problem with the force-coupling model is similar to

Fig. 12. Streamlines and vector plot for a sphere translating parallel to the walls; the walls are placed at x2 ¼ �1; s ¼ 0:30, a ¼ 0:40,

and b=a ¼ 1:5.
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solving the case of a translating or rotating sphere in Eqs. (48a) and (48b). However, in the case of a

Poiseuille flow there is an additional term related to the external Poiseuille flow, so the equations for this

case are

Vi ¼ AijFj þ BijTj þ V Pois
i ; ð53Þ

Xi ¼ CijFj þ DijTj þ XPois
i ; ð54bÞ

where V Pois
i and XPois

i are the velocity and angular velocity of the spheres when no force and no torque are

applied. Using the force-coupling model the problem is then solved in three separate steps. One with a

specified force and no torque, one with a specified torque and no force, and one without any force or

torque. This gives the coefficients Aij, Bij, Cij, and Dij and the velocities V Pois
i and XPois

i , from which the

problem may be inverted to find the necessary force and torque to hold the sphere fixed in the Poiseuille
flow. The force is then written as

F P1 ¼ 6plaUkP ; ð55Þ

to find the non-dimensional drag coefficient kP [30]. The torque is balanced with

T3 ¼ 8pla2UkPT ; ð56Þ

to find the corresponding torque coefficient kPT [30].

The correction factor kP from the force-coupling model is compared with those obtained by Ganatos

et al. [30] in Fig. 15(a). In contrast to the results above for the translating or rotating sphere, the k from our
computation is in excellent agreement for all values of b=a. Similarly the results for the torque coefficient kPT
shown in Fig. 15(b) agrees very well with the values from Ganatos et al. [30].

Fig. 13. Results for a steady rotating sphere. Comparison of the drag coefficient kr (a) and the torque coefficient krT (b) from the force-

coupling model using both force terms (symbols) with the results of Ganatos et al. [30] (lines). (N) and (—) b=a ¼ 5:0; (j) and (� � �)

b=a ¼ 2:0; (.) and (� � � � �) b=a ¼ 1:5; (�) and (� � � � � � �) b=a ¼ 1:25; (I) and (� � �) b=a ¼ 1:1.
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Fig. 15. Results for sphere rigidly held in a Poiseuille flow. Comparison of the drag coefficient kp (a) and the torque coefficient kpT (b)

from the force-coupling model using both force terms (symbols) with the results of Ganatos et al. [30] (lines). (N) and (—) b=a ¼ 5:0;

(j) and (� � �) b=a ¼ 2:0; (.) and (� � � � �) b=a ¼ 1:5; (�) and (� � � � � � �) b=a ¼ 1:25; (I) and (� � �) b=a ¼ 1:1.

Fig. 14. Streamlines and vector plot for a sphere in rotating motion; the walls are placed at x2 ¼ �1; s ¼ 0:30, a ¼ 0:40, and b=a ¼ 1:5.
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A streamline and a vector plot of the flow field for b=a ¼ 1:5 and s ¼ 0:3 are shown in Fig. 16. The
streamlines are similar to those seen in Fig. 12 for the sphere moving parallel to the walls. However, the

fictitious sphere in Fig. 16 does not seem to be squeezed and the shape is more spherical. In the vector plot it

becomes very obvious that the flow goes around the sphere, deflected towards the upper part of the channel.

Furthermore, it can be seen that the force-coupling model sets up an internal flow that opposes the external

Poiseuille flow. The particle velocity, determined from the integral (6), is a combination of the internal flow

and the local external flow and is zero overall.

6. Discussion

In this paper we have described the force-coupling method for computing particle dynamics in fluid

flows, extending the initial formulation based on monopole terms to include force dipoles too. The

model is developed in the context of Stokes flow. Comparison with analytical results for a single sphere

and a pair of spheres in an unbounded domain showed that for distances larger than a quarter of a

radius away from the sphere surface the flow is accurately represented, except for the case of two

spheres moving opposite to each other on the same vertical line. The reason is the lack of lubrication
forces here in the force-coupling description for particles in close proximity. Furthermore, it should be

Fig. 16. Streamlines and vector plot for a sphere in a Poiseuille flow; the walls are placed at x2 ¼ �1; s ¼ 0:30, a ¼ 0:40, and b=a ¼ 1:5.
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emphasized that the parameters in the model are determined such that the kinetic energy budget is self-

consistent.

The method was also tested several cases of Stokes flow in a channel and compared with the results of

Ganatos et al. [29,30]. The results similarly showed good agreement when the distance from the wall to the

sphere was larger than 25% of the sphere radius. Closer to the wall the lack of lubrication forces again

results in quantitative errors, up to 48% for the worst case, but qualitatively the results still agree. In order

to represent the wall correctly the lubrication effects need to be included. One approach is to include more,

higher-order force multipoles, but to represent the lubrication effects correctly many terms are needed and
this is not feasible. Another approach is to model the lubrication forces as separate short-range forces

between pairs of particles, or between a particle and a rigid wall, similar to the procedures adopted in

Stokesian dynamics [6]. This has been the subject of recent work by Dance [33].

As noted previously the FCM scheme is applicable to both Stokes flows and finite Reynolds number

flows, and can be implemented with standard computational flow-solvers for the Navier–Stokes equa-

tions in arbitrary flow geometries. The first step in a numerical solution is to set up a three-dimensional

grid for the flow domain, as in the channel flow computations described in section 5 and in Lomholt

et al. [24]. Regardless of the number of particles included, there is a fixed overhead for the computation
of the base flow. The computation times for the construction of the localized body force fðx; tÞ for the

particles and the evaluation of the particle velocities from the flow scale linearly with N , the number of

particles. The force monopole terms may be specified explicitly in terms of the applied external body

forces on each particle, particle–particle contact forces and particle inertia. The inclusion of contact

forces, while scaling in principle with N 2, can be handled efficiently by standard procedures from mo-

lecular dynamics, see Dance [33]. We have found in ongoing work that in channel flows with 2000

particles the additional computation time for the particle phase is less than 5% of the overall time when

using just the force monopole terms. For larger numbers of particles the costs are still modest and de-
pend more on the efficiency of the computational code.

The stresslet coefficients in (11) are set in order to ensure that the condition (17) on the rate of strain

at each particle location is satisfied. This may be solved in general by an iterative procedure, specifying

initially a stresslet for each particle based on either the value from the last time-step or the stresslet of an

isolated particle in Stokes flow and the current local rate of strain, as in (41). Each iteration requires a

reevaluation of the flow to determine the new rate of strain, from which a correction to the stresslet is

made. For the calculations presented in section 5, typically 3–5 iterations were made using this simple

approach. We find that in practice reducing the locally averaged rate of strain (17) to 1% or less of the
ambient value gives excellent overall results for the flow and particle motion. At finite Reynolds number,

the convergence reported by Lomholt et al. [24] is slower; a more efficient iteration procedure is given by

Dance [33].

Another factor in determining the computational efficiency is the numerical resolution and the size of

the numerical grid. These are specified first by the underlying flow geometry and the flow Reynolds

number. Relative to this, 4–6 grid points to a particle diameter on a uniform mesh are sufficient to

provide accurate numerical resolution. This is significantly lower resolution than is needed for many

other schemes and FCM is efficient for determining the motion of small particles in a flow. A larger
particle will occupy a larger fraction of the flow domain and higher resolution would be available to

consider other schemes.
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